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Progesterone, Neurosteroids,
and the Hormonal Basis
of Catamenial Epilepsy

Women with epilepsy often report an increase in sei-
zures at the time of menstruation. Such catamenial sei-
zure exacerbations were noted in the Hippocratic Cor-
pus, the classical texts of Greek medicine.1 Sir William
R. Gowers in his 1881 treatise on epilepsy wrote that
whereas the relationship of seizures to menstruation “is
a subject on which various opinions have been ex-
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pressed” in more than half of the cases investigated
“the attacks were worse at the monthly periods.”2

Modern researchers generally have found that approxi-
mately 70% of women with epilepsy experience men-
strual cycle–related fluctuations in seizure occurrence,
and one third fit the strict criterion of doubling in fre-
quency proposed by Herzog and colleagues3 as a defi-
nition of catamenial epilepsy. Catamenial seizure exac-
erbations are most common in the perimenstrual
period, but they also can occur at the time of ovula-
tion, and in the second half of “inadequate luteal phase
cycles,” a condition (which may be more frequent in
women with epilepsy4) in which the corpus luteum se-
cretes subnormal amounts of progesterone but normal
estrogen. Despite the high prevalence, clinicians often
discount reports from their female patients of menstrual
seizure worsening, probably because self-reporting is
considered to be unreliable diagnostic criteria and treat-
ment options are not widely recognized, and there is a
belief that the condition does not have a firm scientific
basis. In recent years, considerable progress has been
made toward defining the hormonal factors that contrib-
ute to menstrual cycle–related fluctuations in seizure sus-
ceptibility, and specific treatment approaches are under
rigorous evaluation. These developments should moti-
vate clinicians to have a greater index of suspicion and a
more compassionate attitude in treating women who are
affected.

Although a variety of nonendocrine mechanisms
such as fluctuations in antiepileptic drug levels and
changes in water and electrolyte balance have been pro-
posed as causes for catamenial epilepsy, the best estab-
lished causative factors are hormonal, and there is par-
ticularly strong evidence implicating cyclic changes in
serum progesterone. The relationship was first sug-
gested in 1956 by John Laidlaw who analyzed the
records of 50 unselected women inpatients in a subur-
ban London epilepsy hospital whose seizure and men-
strual records were available over a 25-year period en-
compassing more than 9,000 menstrual cycles.5

Laidlaw noted an “increased incidence [on average by
as much as 45%] of fits immediately before, during,
and after menstruation” and a reduction in the ex-
pected frequency by as much as 30% in the midluteal
phase. Recognizing that progesterone levels are highest
in the midluteal phase and decrease abruptly at men-
struation, Laidlaw reasoned that catamenial epilepsy
“could be explained if it were assumed that progester-
one exerted a slight but significant anticonvulsant ac-
tion.” Laidlaw’s hypothesis was supported by Torbjörn
Bäckström’s findings of a negative correlation between
plasma progesterone and seizure frequency, with the
greatest increase in seizures corresponding to the rapid
progesterone decline at menstruation.6 Note that Bäck-
ström also observed a relationship between the preovu-
latory estrogen surge and an increase in seizures at mid-

cycle, leading him to conclude that estrogen activates
seizures.

Not long after progesterone was chemically identi-
fied by the German chemist Adolf Friedrich Johann
Butenandt and 14 years before Laidlaw’s prescient sug-
gestion regarding the role of progesterone in catamenial
epilepsy, Hans Selye in 1942 reported that progester-
one had anticonvulsant properties in rats.7 In succeed-
ing decades, as the molecular actions of progesterone
were being characterized, the mechanism underlying
this remarkable observation remained a mystery. Pro-
gesterone is secreted by the corpus luteum and serves
various roles in female reproductive function, which
are mediated mainly by binding to progesterone recep-
tors target cells, such as those of the endometrial epi-
thelium. When complexed with progesterone, proges-
terone receptors, members of the nuclear receptor
superfamily of transcription factors, associate as dimers
to specific DNA sequences (progestin response ele-
ments) in target genes, thereby altering the rate at
which these genes are transcribed. However, the anti-
convulsant effects described by Selye occurred within
minutes, too rapidly to be caused by alterations in gene
transcription. In the mid-1980s it was found that a
progesterone metabolite allopregnanolone, often re-
ferred to as a “neurosteroid,” is a powerful positive al-
losteric modulator of GABAA receptors8 (Fig). As with
other agents that act to enhance GABAergic inhibition,
allopregnanolone has anticonvulsant properties.9 Thus,
it seemed possible that the anticonvulsant activity of
progesterone could be because of its conversion to al-
lopregnanolone. This conjecture was proved in animals
using finasteride, a 5�-reductase inhibitor, to block the
first step in the conversion of progesterone to allopreg-
nanolone10 and more recently confirmed in female
mice with an induced null mutation in a 5�-reductase
gene.11 Moreover, in an animal model of perimenstrual
catamenial epilepsy, it was demonstrated that with-
drawal of allopregnanolone (like that which occurs at
menstruation in concert with decreasing levels of pro-
gesterone) is associated with a marked increase in sei-
zure susceptibility.12,13 This is in part undoubtedly be-
cause of the loss of the anticonvulsant effects of
allopregnanolone, but there also may be changes in the
properties of GABAA receptors that predispose to
heightened seizure susceptibility.14,15 During this
seizure-prone state, the activity of conventional antiepi-
leptic drugs is reduced, possibly accounting for the
clinical impression that catamenial seizures are unusu-
ally drug resistant.16 In contrast, neurosteroids that
positively modulate GABAA receptors actually have en-
hanced anticonvulsant potency in the model, providing
support for a “neurosteroid replacement” approach to
the treatment of perimenstrual catamenial epilepsy
with either natural neurosteroids or synthetic analogs,17

or with progesterone to act as a precursor. The avail-
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able clinical evidence suggests that the latter approach
is promising,18 and a multicenter placebo-controlled
trial is in progress. Although progesterone is relatively
well tolerated, hormonal side effects such as breast ten-
derness can occur and a short serum half-life makes it
inconvenient to administer; neurosteroid analogs that
do not mimic progesterone’s genomic actions and have
improved pharmacokinetic properties may overcome
these drawbacks.

A brief report in this issue of the Annals by Herzog
and colleagues19 provides anecdotal evidence support-

ing the concept that progesterone’s therapeutic activity
in catamenial epilepsy requires conversion to a 5�-
reduced metabolite. A women with catamenial epilepsy
and polycystic ovary syndrome was being treated with
progesterone, which improved her seizure control. Un-
beknownst to her epileptologist, another physician began
giving her finasteride, and a drastic increase in seizure
frequency and severity ensued. Ordinarily, finasteride is
contraindicated in women of reproductive age because it
inhibits the conversion of testosterone to the more po-
tent androgen dihydrotestosterone and may impair viril-
ization of a male fetus, but it often is used in the hy-
perandrogenic state of polycystic ovary syndrome. The
unintentional experiment represented by this case report
is the first direct evidence that endogenous neuros-
teroids can regulate seizure susceptibility in humans
and should serve as an impetus for further exploration
of neurosteroid-based epilepsy therapies, for which
there is already preliminary evidence of efficacy in
non–menstrual-related seizure disorders.20

Michael A. Rogawski, MD, PhD

Epilepsy Research Section
National Institute of Neurological Disorders and Stroke
National Institutes of Health
Bethesda, MD
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